Argo o

NATIONAL LABORATORY

Learning Python

Getting results for beamlines and scientific programming

2. Basic Python: higher level data types

Office of
Science

The Advanced offce U, Department

A |
Higher-level data types in Python

Python offers a number of data types that provide ways to form collections of other
data types. Each of these have advantages for different types of programming
tasks.

The three most basic higher-level data types in Python are lists, tuples and dicts.

— There are many other types of higher-level data types in Python that can be very useful,
such as sets and datetime

Basics:

= lists and tuples are ordered collections of values,

= dictionaries (dicts) are unordered arrays of values with user supplied keys

= Lists, tuples, dicts can contain as values primitives (int, floats, etc.) or any higher-
level data type (lists inside dicts inside tuples...)

= Lists, tuples and dictionaries all can play the role of arrays in Fortran or C.

Lets look in more detail, starting with the list data type

‘Q scence U, Department Laboratory
—=

Python Course Handouts - Brian Toby

Outline of topics to be covered

1. High-level data types
a) Lists
b) Tuples
c) Strings revisited
d) Dicts (dictionaries)
e) Sets
2. Length of a collection (len)

A‘ (‘L - Science Us. D Laboratory

-———

Higher-level data types: Lists

A list contains a bunch of stuff in a specified order (Downey, Chapter 8)

= List:
a=[1,2,3,57,11]
= Elements in a list can be addressed individually:
print a[2]
3 (Note: indexing starts with [0])
= List elements can be changed:
a[2]=-3
print a
[1,2,-3,5,7,11]
= Alist can contain any other Python data type
cvariable = complex(0,1)
B =[1,3.14159, ‘pi’, [‘@’,list’,'in’,’a’,’list’], cvariable]

‘(: Science Us. Department Laboratory

Y

5/10/11

Slicing a list

The indices on a list can address a large number parts of the array in many ways using

[start:end:increment]

More fun things with lists

All Python data types are actually objects, with associated “methods”.
To see a list, use print dir(var); ignore items beginning with “_”

Method for lists: append, count, extend, index, insert, pop, remove, reverse, sort

>>>a=[1,2,3,57,11]
>>> 3
[1,2,3,5,7,11]
>>>a[1:4]
[2,3,5]

>>> a[4:]

17, 11]

>>> a[:4]
[1,2,3,5]
>>>a[2:-1]
[3,5,7]

>>> a[2:-1]=[0,0,0]
>>> print a
[1,2,0,0,0,11]
>>>all::2]

[2,0,11]
>>>a[::2]=['a",'b’,'c']
>>>a
['a',2,'p',0,'c, 11]
>>>a[:]
['a',2,'p',0,'c, 11]

>>>a=[1,2,3,5,7,11)]
>>>al-3:-1]

[5,7]

>>> g[-1:-3]

I

>>>al:-1]
[11,7,5,3,2,1]
>>>3[-1:-3:-1]

[11, 7]

The Advanced Photon Source is an Offce of Science

Laboratory

Building a list

= A common way to use lists is to start with an empty list and add elements

A =1]
A.append(11)
A.append(13)

= |tis not possible to add elements by addressing past the end of the list:

A[2] = 17

IndexError: list assignment index out of range

= Like strings, lists can be added:

>>> [1,2,3] + [4,5,6]
[1, 2, 3, 4, 5, 6]

The Science

US. Department

Laboratory

>>> a >>>a = [1, 2, 3, 5, 7, 11, 13, 17]
(L, 2, 3, 5, 7, 11 >>> a.pop()
>>> a.append(13) 17
>>> a >>> a
i, 2, 3, 5, 7, 11, 13] [1, 2, 3, 5, 7, 11, 13]
>>> a.insert(0,17) >>> a.pop(0)
>>> a 1
17, 1, 2, 3, 5, 7, 11, 13] >>> a
>>> a.sort() [2, 3, 5, 7, 11, 13]
>>> a >>> len(a)
1, 2, 3, 5, 7, 11, 13, 17] 6

The Advanced Photon Source i an Offce of Sience Us.o Lsborstory
o

Python Course Handouts - Brian Toby

Higher-level data types: Tuples

Tuples (Downey, Chapter 9) are very similar to lists, but tuples cannot be changed
(immutable)

= Tuples:

— Note that any time items are joined with a comma, a tuple is created, but this tends to

be confusing; it is wise to always use parenthesis:
t=1,2,3,5,7,11 #or

= (1,2,3,5,7,11,) #or

= (1,2,3,5,7,11)

o

= Elements in a tuple can be addressed individually just like a list:
print t[2]
3
— Note: indexing starts with [0], same as with a list

= Important distinction: Tuple elements cannot be changed:

>>> t[2] = -3
TypeError: 'tuple' object does not support item assignment

The Science Us. Department Laboratory

o

5/10/11

>
5/10/11

| |
Higher-level data types: Tuples Quick Review: Tuples vs. Lists
= Atuple can contain any other Python data type = Tuples optionally use parenthesis () and cannot be changed
cvariable = complex(0,1) = Lists always use square brackets [] and can be modified in place
B =(1,3.14159, ‘pi’, [‘@’list’,'in’,’a’,'tuple’], cvariable)
= One can define an empty tuple: t = () = They are different data types. You can’t add a tuple and a list:

— Onecan’taddtoit

>>> (1,2,3) + [4,5,6]

= To define a tuple with one element, the “extra” comma is required o
TypeError: can only concatenate tuple (not "list") to tuple

t=(1,)

= Tuples can be added as well

>>> (1,2,3) + (4,5,6)
(1, 2, 3, 4, 5, 6)

— Note that adding two tuples creates a third distinct tuple but does not change the
original ones

The Advanced Photon Source is an Offce of Science Us. D Laboratory The Advanced Photon Source is an Offce of Science Us. D Laboratory

a a

Reprise: Strings Python Dictionaries

= A Python dictionary (type dict) a place where any number of data items can be
stored, associated with a key (think of the key as a label that identifies each
storage location). Unlike a list or tuple, where items are stored and retrieved

= Strings can be indexed just like lists and tuples . R . . K K
ing indexed just fike up sequentially, there is no order associated with elements in a dict.

= Strings cannot be changed -- like tuples (but unlike lists) = For some uses a dict is very much like an array

= Dicts can be defined by adding elements or all at one time (or both). The two
examples below define the same dictionary:

>>> abc = 'abcdefghijklmnopgrstuvwxyz'
>>> len(abc) A={} A={ 1:1.0,
26 !
>>> abc[1] A[1]=1.0 2:2.0,
‘b’ N) A[2]=2.0 ‘two’: 2,
>>> abc[::-2] ‘ "= .
'zxvtrpnljhfdb' A[two] =2 2.1 2'
>>> abe[1] = 'B’ Al2.1]=2 }
TypeError: 'str' object does not support item assignment
e >>> A

{1: 1.0, 2: 2.0, 2.1000000000000001: 2, 'two": 2}

>>>A[2.1]

2

>>> A[2]

2.0

science U, Department Laboratory science U, Department Laboratory
S S

Python Course Handouts - Brian Toby

o

Methods for dicts

= The routines associated with a dict are: clear, copy, fromkeys, get, has_key, items,
iteritems, iterkeys, itervalues, keys, pop, popitem, setdefault, update, values

Most commonly used:

>>> A = {1:1.0, 2: 2.0, 'two': 2, 2.1: 2}

keys() gives a list of keys >>> A.keys()
[1, 2, 2.1000000000000001, 'two']
values() gives a list of values in the >>> A.values()

[1.0, 2.0, 2, 2]

>>> A.items()

[(1, 1.0), (2, 2.0), ...
>>> A.has_key(2)

same order as keys()

items() gives the dict contents as key,

value pairs True
>>> A.has_key(2.2)
has_key(key) is True if the key is False
defined >>> A.get(2, 'not specified')
2.0

>>> A.get(2.2, 'not specified')

get(key) returns the value or None e
‘not specified

get(key,d) returns the value or d

The Advanced Photon Source is an Offce of Science .0

Laboratory

The len() built-in

= Use len(var) to find out the number of elements in a list, tuple or dict or characters

in a string

>>> A = []

>>> len(A)

0

>>> A = (1,2,3)

>>> len(A)

3

>>> A = {1:1.0, 2: 2.0, 'two':
2, 2.1: 2}

>>> len(A)

>>> len('test')

4

Science Us. Department Laboratory

A newer Python data type: sets

= Asetissimilar to a list, except that it is unordered and only the unique elements
are saved:

>>> set([3,2,1,0,1,2,3])
set([0, 1, 2, 3])

= Working with sets is a very nice way to perform logical manipulations of groups of
items

>>> sl
>>> 52
>>> s2
set([3, 4, 5])

>>> sl | s2 # union of sets

set([0, 1, 2, 3, 4, 5])

>>> len(sl & s2) # count shared elements
1

set([3,2,1,0,1,2,3])
set((3,4,5))

= Conversion back to a list is easy

>>> list(sl|s2) # union of sets as a list
o, 1, 2, 3, 4, 5]

The Advanced Photon Source is an Offce of Science .0

Laboratory

o

Python Course Handouts - Brian Toby

Homework

= Specify the data types of the following values:
(1,2,3)
[2,3,4]
'To be, or not to be'
'To be', 'or not to be’
('To be', 'or not to be’)
{2:3, 3:4}
[3,(1,2),4]

Science Us. Department Laboratory

5/10/11

